Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38543904

RESUMEN

INTRODUCTION: Exploring T cell response duration is pivotal for understanding immune protection evolution in natural SARS-CoV-2 infections. The objective of the present study was to analyze the T cell immune response over time in individuals who were both vaccinated and COVID-19-naive and had undetectable levels of SARS-CoV-2 IgG antibodies at the time of testing. METHODS: We performed a retrospective descriptive analysis using data extracted from the electronic medical records of consecutive adult individuals who underwent COVID-19 immunity screening at a private healthcare center from September 2021 to September 2022. The study participants were divided into three groups according to the post-vaccination time period, as follows: group A (up to 3 months), group B (3-6 months), and group C (>6 months). T cell response was evaluated using the IGRA methodology T-SPOT®.COVID. RESULTS: Of the total number of subjects (n = 165), 60/165 (36.4%) had been vaccinated in the last 3 months (group A), 57/165 (34.5%) between 3 and 6 months (group B), and 48/165 (29.1%) at least 6 months prior to the examination day (group C). T cell positivity was reported in 33/60 (55.0%) of group A, 45/57 (78.9%) of group B, and 36/48 (75%) of group C (p < 0.007). No statistically significant differences were revealed in the spot-forming cell (SFC) count among groups, with mean SFC counts of 75.96 for group A, 89.92 for group B, and 83.58 for group C (Kruskal-Wallis test, p = 0.278). CONCLUSIONS: Our findings suggest that cellular immunity following SARS-CoV-2 vaccination may endure for at least six months, even in the presence of declining or absent IgG antibody levels.

2.
Vaccines (Basel) ; 11(12)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38140169

RESUMEN

BACKGROUND: Immune response to SARS-CoV-2 is crucial for preventing reinfection or reducing disease severity. T-cells' long-term protection, elicited either by COVID-19 vaccines or natural infection, has been extensively studied thus far; however, it is still attracting considerable scientific interest. The aim of the present epidemiological study was to define the levels of T-cellular immunity response in a specific group of unvaccinated individuals from the general population with a prior confirmed COVID-19 infection and no measurable levels of IgG antibodies. METHODS: We performed a retrospective descriptive analysis of data collected from the medical records of consecutive unvaccinated individuals recovered from COVID-19, who had proceeded to a large private medical center in the Attica region from September 2021 to September 2022 in order to be examined on their own initiative for SARS-CoV-2 T-cell immunity response. The analysis of T-cell responses was divided into three time periods post infection: Group A: up to 6 months; Group B: 6-12 months; Group C: >12 months. The SARS-CoV-2 T-cell response was estimated against spike (S) and nucleocapsid (N) structural proteins by performing the T-SPOT. COVID test methodology. SARS-CoV-2 IgG antibody levels were measured by the SARS-CoV-2 IgG II Quant assay (Abbott Diagnostics). RESULTS: A total of 182 subjects were retrospectively included in the study, 85 females (46.7%) and 97 (53.3%) males, ranging from 19 to 91 years old (mean 50.84 ± 17.2 years). Among them, 59 (32.4%) had been infected within the previous 6 months from the examination date (Group A), 69 (37.9%) had been infected within a time period > 6 months and <1 year (Group B) and 54 (29.7%) had been infected within a time period longer than 1 year from the examination date (Group C). Among the three groups, a positive T-cell reaction against the S antigen was reported in 47/58 (81%) of Group A, 61/69 (88.4%) of Group B and 40/54 (74.1%) of Group C (chi square, p = 0.27). T-cell reaction against the N antigen was present in 45/58 (77.6%) of Group A, 61/69 (88.4%) of Group B and 36/54 (66.7%) of Group C (chi square, p = 0.02). The median Spot-Forming Cells (SFC) count for the S antigen was 18 (range from 0-160) in Group A, 19 (range from 0-130) in Group B and 17 (range from 0-160) in Group C (Kruskal-Wallis test, p = 0.11; pairwise comparisons: groups A-B, p = 0.95; groups A-C, p = 0.89; groups B-C, p = 0.11). The median SFCs count for the N antigen was 14.5 (ranging from 0 to 116) for Group A, 24 (ranging from 0-168) in Group B and 16 (ranging from 0-112) for Group C (Kruskal-Wallis test, p = 0.01; pairwise comparisons: groups A-B, p = 0.02; groups A-C, p = 0.97; groups B-C, p = 0.03). CONCLUSIONS: Our data suggest that protective adaptive T-cellular immunity following natural infection by SARS-CoV-2 may persist for over 12 months, despite the undetectable humoral element.

3.
Vaccines (Basel) ; 11(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37515000

RESUMEN

(1) Background: SARS-CoV-2 T cell immunity is rapidly activated following SARS-CoV-2 infection and vaccination and is crucial for controlling infection progression and severity. The aim of the present study was to compare the levels of T cell responses to SARS-CoV-2 between cohorts of subjects with hybrid immunity (convalescent and vaccinated), vaccinated naïve (non-exposed) and convalescent unvaccinated subjects. (2) Methods: We performed a retrospective descriptive analysis of data collected from the medical records of adult individuals who were consecutively examined at a large, private Medical Center of Attica from September 2021 to September 2022 in order to be examined on their own initiative for SARS-CoV-2 T cell immunity response. They were divided into three groups: Group A: SARS-CoV-2 convalescent and vaccinated subjects; Group B: SARS-CoV-2 naïve vaccinated subjects; Group C: SARS-CoV-2 convalescent unvaccinated subjects. The SARS-CoV-2 T cell response was estimated against spike (S) and nucleocapsid (N) structural proteins by performing the methodology T-SPOT.COVID test. (3) Results: A total of 530 subjects were retrospectively included in the study, 252 females (47.5%) and 278 (52.5%) males ranging from 13 to 92 years old (mean 55.68 ± 17.0 years). Among them, 66 (12.5%) were included in Group A, 284 (53.6%) in Group B and 180 (34.0%) in Group C. Among the three groups, a reaction against S antigen was reported in 58/66 (87.8%) of Group A, 175/284 (61.6%) of Group B and 146/180 (81.1%) of Group C (chi-square, p < 0.001). Reaction against N antigen was present in 49/66 (74.2%) of Group A and in 140/180 (77.7%) of Group C (chi-square, p = 0.841). The median SFC count for S antigen was 24 (range from 0-218) in Group A, 12 (range from 0-275) in Group B and 18 (range from 0-160) in Group C (Kruskal-Wallis test, p < 0.001; pairwise comparisons: groups A-B, p < 0.001; groups A-C, p = 0.147; groups B-C, p < 0.001). The median SFCs count for N antigen was 13 (range 0-82) for Group A and 18 (range 0-168) for Group C (Kruskal-Wallis test, p = 0.27 for A-C groups). (4) Conclusions: Our findings suggest that natural cellular immunity, either alone or combined with vaccination, confers stronger and more durable protection compared to vaccine-induced cellular immunity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...